
NFAε - NFA - DFA equivalence

What is an NFA

 An NFA is an automaton that its states might have
none, one or more outgoing arrows under a specific
symbol.

 A DFA is by definition an NFA (each state has exactly
one outgoing arrow under each symbol).

q

0
q1

1
0,1

What is an NFAε

 An NFAε is an NFA that might have ε-moves. In an ε-
move we can transport from one state to the other
without having any symbols.

 An NFA is by definition an NFAε (but with no ε-
moves).

q

0
q1

1
ε,1

NFA computation

• An NFA illustrates a machine that can have choices
(just like our brains). If there are two arrows under a
specific symbol it can choose either of them and follow
it.

• So it works more or less like you. Suppose that you
want to do something and that you can think of several
methods to do it. Some of them can possibly fail but it
suffices to find one that succeeds.

• An NFA accepts a string if there exists a path
following arrows under the symbols of the string
consecutively that takes us to an accept state.

Example

• This automaton accepts the string 1110 because
there is a path under 1110 that takes us to an accept
state (the path q0 , q0 , q0 , q1), beside the fact that
there are paths under 1110 that fail (for example
the path q0 , q0 , q1, q0).

• However it doesn’t accept the string 00 because
there are no paths under 00 that can take us to q1.

q

0
q1

1

0,1

0

NFA – DFA equivalence

 The language that an NFA recognizes is the set of
strings which the NFA accepts.

 To see if a string is accepted it suffices to find the set
of the possible states in which I can be with this
string as input and see if a final state is contained in
this set.

NFA – DFA eqivalence

 Whenever an arrow is followed, there is a set of
possible following states that the NFA can be. This
set of states is a subset of Q.

 For example with 0010 I have the following sequence
of set of states:

q

0
q1

1

0,1

0

q2

0

},,{},{},{}{ 210
0

10
1

20
0

1
0

0 qqqqqqqqq

NFA – DFA equivalence

 So I only want to keep information about these
subsets of states that can be reached from the initial
state after following arrows.

 Since all the subsets of Q are 2|Q| in total, this should
be a finite (<= 2|Q|) number of subsets.

 I consider each subset of states of the NFA as a state
of the DFA and every subset of states containing a
final state as a final state of the DFA.

NFA – DFA equivalence

Suppose that you want to find an equivalent DFA for
an NFA . The algorithm is the following:

 Start from the start state and see where 0 or 1 takes
you.

 For every new subset you find, see where 0 or 1 takes
you.

 Repeat until no new subsets are found.

NFA – DFA equivalence (example)

To find an equivalent DFA with the NFA of the figure
I should complete the following table:

0 1

q0 {q1} {q0, q1}

{q1} {q0, q2}

{q0, q1} {q0, q1,
q2}

{q0, q1}

{q0, q2} {q1} {q0, q1}

{q0, q1,
q2}

{q0, q1,
q2}

{q0, q1}

0

0

00

q

0
q1

1

0,1

0

q2

0

0 1

q0 {q1} {q0, q1}

{q1} {q0, q2}

{q0, q1} {q0, q1,
q2}

{q0, q1}

{q0, q2} {q1} {q0, q1}

{q0, q1,
q2}

{q0, q1,
q2}

{q0, q1}

q01

q02q0 q1

q01

2

0

0

1

01

0
1

1

0

0,1

010

0

00

NFA – DFA equivalence (example)

So the DFA is:

NFAε – NFA equivalence

 An NFAε is an NFA in which I can have ε-moves.

 I want to get rid of ε-moves.

NFAε – NFA equivalence

 Suppose that I have an ε-move like in the figure.
Since an ε-move is like teleporting from q1 to q2 I can
remove the arrow with the ε and add several arrows
from q1 to every neighbor of q2.

q1 q2

1

ε

0

q4
0

q5

q3

q1

1

0

q4
0

q5

q3

q2

1

0

0

NFAε – NFA equivalence

 If from q1 an ε-move takes me to q2 which is accept
state then, when I remove the ε-move I should
convert q1 to accept state.

q1 q2
ε q4

0 q1

0

q2 q4
0

